Peak Quasisymmetric Functions and Eulerian Enumeration
نویسندگان
چکیده
Via duality of Hopf algebras, there is a direct association between peak quasisymmetric functions and enumeration of chains in Eulerian posets. We study this association explicitly, showing that the notion of cd-index, long studied in the context of convex polytopes and Eulerian posets, arises as the dual basis to a natural basis of peak quasisymmetric functions introduced by Stembridge. Thus Eulerian posets having a nonnegative cd-index (for example, face lattices of convex polytopes) correspond to peak quasisymmetric functions having a nonnegative representation in terms of this basis. We diagonalize the operator that associates the basis of descent sets for all quasisymmetric functions to that of peak sets for the algebra of peak functions, and study the g-polynomial for Eulerian posets as an algebra homomorphism. 1. Introduction In the enumerative theory of partially ordered sets, one is often interested in enumerative functionals that are nonnegative for a given class of posets. Thus, for example, the generalized lower bound theorem for convex polytopes asserts that
منابع مشابه
Flag Enumeration in Polytopes Eulerian Partially Ordered Sets and Coxeter Groups
We discuss the enumeration theory for flags in Eulerian partially ordered sets, emphasizing the two main geometric and algebraic examples, face posets of convex polytopes and regular CW -spheres, and Bruhat intervals in Coxeter groups. We review the two algebraic approaches to flag enumeration – one essentially as a quotient of the algebra of noncommutative symmetric functions and the other as ...
متن کاملBruhat and balanced graphs
We generalize chain enumeration in graded partially ordered sets by relaxing the graded, poset and Eulerian requirements. The resulting balanced digraphs, which include the classical Eulerian posets having an R-labeling, implies the existence of the (non-homogeneous) cd-index, a key invariant for studying inequalities for the flag vector of polytopes. Mirroring Alexander duality for Eulerian po...
متن کاملEulerian Quasisymmetric Functions
We introduce a family of quasisymmetric functions called Eulerian quasisymmetric functions, which specialize to enumerators for the joint distribution of the permutation statistics, major index and excedance number on permutations of fixed cycle type. This family is analogous to a family of quasisymmetric functions that Gessel and Reutenauer used to study the joint distribution of major index a...
متن کاملThe Tchebyshev Transforms of the First and Second Kind∗
An in-depth study of the Tchebyshev transforms of the first and second kind of a poset is taken. The Tchebyshev transform of the first kind is shown to preserve desirable combinatorial properties, including EL-shellability and nonnegativity of the cd-index. When restricted to Eulerian posets, it corresponds to the Billera, Ehrenborg and Readdy omega map of oriented matroids. The Tchebyshev tran...
متن کاملEulerian Quasisymmetric Functions and Poset Topology
We introduce a family of quasisymmetric functions called Eulerian quasisymmetric functions, which have the property of specializing to enumerators for the joint distribution of the permutation statistics, major index and excedance number on permutations of fixed cycle type. This family is analogous to a family of quasisymmetric functions that Gessel and Reutenauer used to study the joint distri...
متن کامل